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Adaptive Coding of Reward Value
by Dopamine Neurons

Philippe N. Tobler, Christopher D. Fiorillo,* Wolfram Schultz}

It is important for animals to estimate the value of rewards as accurately as
possible. Because the number of potential reward values is very large, it is
necessary that the brain’s limited resources be allocated so as to discriminate
better among more likely reward outcomes at the expense of less likely
outcomes. We found that midbrain dopamine neurons rapidly adapted to the
information provided by reward-predicting stimuli. Responses shifted relative
to the expected reward value, and the gain adjusted to the variance of reward
value. In this way, dopamine neurons maintained their reward sensitivity over

a large range of reward values.

In order to select the action associated with
the largest reward, it is critical that the neural
representation of reward has minimal uncer-
tainty. A fundamental difficulty in repre-
senting the value of rewards (and many
other stimuli) is that the number of possible
values has no absolute limits. By contrast, the
representational capacity of the brain is lim-
ited, as exemplified by its finite number of
neurons and the limited number of possible
spike outputs of each neuron. If a neuron’s
limited outputs were allocated evenly to
represent the large, potentially infinite number
of possible reward values, then that neuron’s
activity would allow for little if any discrim-
ination between rewards. However, a neuron’s
discriminative capacity can be improved if the
neuron has access to information indicating
that some reward values are more likely to
occur than others and if it can allocate most of
its spike outputs to representing the most prob-
able values. Conditioned, reward-predicting
stimuli could provide such information for
neurons, as they do in a more general way for
behavior (/-3). Here we investigate how
dopamine neurons adapt to the information
about reward value contained in predictive
stimuli. These neurons play a major role in
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reward processing (4—7) and respond to
rewards and reward-predicting stimuli (8—/17).

We presented distinct visual stimuli that
specified both the probability and magnitude
of otherwise identical juice rewards to mon-
keys well trained in a Pavlovian procedure
(12). Standard procedures were employed to
extracellularly record the activity of single
dopamine neurons of midbrain groups AS,
A9, and A10 in two awake Macaque monkeys
(12). We report data for all recorded neurons
that displayed electrophysiological character-
istics typical of dopamine neurons (wide
impulses at low rates) (12, 13). In an attempt
to accurately portray the whole population of
dopamine neurons, we did not select neurons
on the basis of their modulation by a reward
event.

The expected value of future rewards (the
sum of possible reward magnitudes, each
weighted by its probability) is thought to be
an important variable determining choice
behavior (/4-17). To test this, we trained
an animal with a set of five distinct visual
stimuli presented in pseudorandom alterna-
tion. Each stimulus indicated the probability
that a specific liquid volume would be de-
livered 2 s after stimulus onset. Anticipatory
licking before liquid delivery was elicited by
the smallest positive expected liquid volume
tested (0.05 ml at probability p = 0.5) and
increased with expected liquid volume, sug-
gesting that the animals had learned to use
the stimuli to predict liquid delivery and that
the larger liquid volumes corresponded to
larger reward values (Fig. 1A). The transient
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activation of dopamine neurons increased
monotonically with the expected liquid vol-
ume associated with each stimulus (Fig. 1, B
and C). For example, the stimulus predicting
0.15 ml at p = 1.0 elicited significantly
greater neural activation than the stimulus
predicting the same magnitude reward at p =
0.5, but less activation than the stimulus
predicting 0.50 ml at p = 0.5. The activation
of dopamine neurons also increased with the
combination of magnitude and probability
when the stimuli predicted that either of two
nonzero magnitudes would occur with equal
probability (Fig. 1C, animal B).

To investigate whether individual neurons
might be preferentially sensitive to proba-
bility or magnitude, we took independent
measures of sensitivity to magnitude and
probability in each neuron (n = 57 neurons).
There was a positive correlation (R? = 0.23,
P < 0.005), indicating that those neurons that
were most sensitive to reward magnitude
were also most sensitive to probability (Fig.
1D). Thus, it appears that dopamine neurons
encode a combination of magnitude and
probability, as expressed, for example, by
the expected reward value, rather than dis-
tinguishing between the two.

Having examined responses to reward-
predicting stimuli of differing values, we
investigated the extent to which dopamine
neurons discriminated between different vol-
umes of unpredicted liquid. We delivered
three distinct liquid volumes (0.05, 0.15, and
0.50 ml) in pseudorandom alternation with a
variable intertrial interval (/&) and in the
absence of any explicit predictive stimuli.
Both individual dopamine neurons (43 of 55
neurons tested; P < 0.01, Wilcoxon test) and
the population as a whole (55 neurons)
showed greater activation for the large than
for the small liquid volume (Fig. 2). Thus,
the activation of dopamine neurons increased
with the reward value of unpredicted liquids,
similar to the responses to reward-predicting
visual stimuli.

Although these results suggest that dopa-
mine neurons encode the reward value in a
monotonically increasing fashion, past work
indicates that they do not represent absolute
value. Rather, they appear to encode value as
a prediction error by representing at each
moment in time the difference between the
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Fig. 1. Behavioral and neuronal responses to A B
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(animal A) and 110 to 240 ms (animal B) after

the onset of visual stimuli. The median (+95%

confidence intervals) percent change in firing rates within the population
was calculated after normalization of responses within each neuron to the
response evoked after onset of the stimulus associated with the largest
expected value. This stimulus elicited a median activation of 167% in
animal A (n = 57 neurons) and 40% in animal B (n = 53 neurons). For
animal A (squares), stimuli indicated probability and magnitude as in (B).
For animal B (circles), one stimulus was never followed by liquid, whereas
each of the other three stimuli was associated with two volumes of equal
probability (0.05 or 0.15 ml, 0.05 or 0.50 ml, and 0.15 or 0.50 ml). In each
animal, the population of neurons discriminated among each expected
value tested, except for 0.0 versus 0.025 ml in animal A. (Right) An
alternative analysis, illustrating the sensitivity (spikes/s/ml) of a typical
dopamine response to expected liquid volume. For each individual neuron,
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Fig. 2. Neural discrimination of liquid
volume. (A) (Top) Rasters and histograms
of activity from a single dopamine neuron.
(Bottom) Population histograms of activity
from all neurons tested (n = 55 neurons).
Three volumes of liquid were delivered in
pseudorandom alternation in the absence
of any explicit predictive stimuli. The inter-
trial interval ensured that the expected
volume at any given moment was low
(78). Thick horizontal bars above the rasters

5 spikes/s|

|

the number of impulses after stimulus onset was plotted as a function of
expected magnitude, and a line was fit. The lines shown are the median
lines of each population of neurons (animal A, solid line, spikes/s = 11.5 x
magnitude + 3.1, R2 = 0.57; animal B, spikes/s = 5.2 x magnitude + 3.0,
R? = 0.69). (D) Positive correlation between the sensitivity of individual
neurons to reward probability and magnitude (R? = 0.23, P < 0.005). For
the data from animal A in (C), responses in each neuron (n = 57 neurons)
are plotted both as a function of expected value, as determined both by
reward probability (0.15 ml at p = 0.0, 0.5, and 1.0) and by liquid volume
(0.05, 0.15, and 0.50 ml at p = 0.5). A line was fit in each case, and the
slopes provided independent estimates of the sensitivity of that neuron to
reward probability and magnitude. For each neuron, the slopes are plotted
against each other.
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indicate the time of reward delivery, and
thin horizontal bars indicate the single
standard time window that was used for measuring the magnitude of all
responses in all neurons, as summarized in (B). Similar windows were used
for all analyses and plots (supporting text). (B) Neural response as a
function of liquid volume. Median (+95% confidence intervals) percentage

Rewa rEI onset

Reward magnitude (ml)

change in activity for the population of neurons (n = 55 neurons) was
calculated for responses to each volume after normalization in each neuron
to the response after delivery of 0.5 ml, which itself elicited a median
activation of 159% above baseline activity.

reward value (the sum of current and future
rewards) and its expected value (before
observation of current sensory input). Recent
work demonstrates that, when signaling pre-
diction errors, dopamine neurons are able to
use contextual information in addition to
information from explicitly conditioned stimu-
li (19). In the experiments shown in Figs. 1
and 2, all visual stimuli and liquid volumes
were delivered in a context in which the
expected reward value at each moment in
time was low and invariant across trial types
because of the intertrial interval (/8). In our
next set of experiments, we delivered differ-

www.sciencemag.org SCIENCE VOL 307

ent volumes of liquid in the presence of
explicit predictions indicated by conditioned
stimuli, allowing us to systematically vary the
expected value and range of reward.
Consistent with past work, a reward occur-
ring exactly at the expected value (0.15 ml)
elicited no response. However, when liquid
volume was unpredictably smaller (0.05 ml)
or larger (0.50 ml) in a minority of trials,
dopamine neurons were suppressed or acti-
vated, respectively, compared to both the
prestimulus baseline and the response to the
expected volume delivered in the majority of
trials (P < 0.01, Mann-Whitney test) (Fig. 3,

A and B). In an additional experiment, one
stimulus predicted that either the small or
medium volume would be delivered with equal
probability, whereas another stimulus pre-
dicted either the medium or large volume with
equal probability. In both cases, delivery of the
larger of the two potential volumes elicited an
increase in activity, whereas the smaller
volume elicited a decrease (Fig. 3C). Thus,
the identical medium volume had opposite
effects on activity depending on the prediction
(P < 0.01 in 19 of 53 neurons, Mann-
Whitney; P < 0.0001 for the population of
53 neurons, Wilcoxon test) (Fig. 3D). These
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results show how dopamine neurons process
reward magnitude relative to a predicted
magnitude and that a reward outcome that is
positive on an absolute scale can nonetheless
suppress the activity of dopamine neurons.
Although these results suggest that
dopamine responses shift relative to the
predicted reward magnitude, it is not known
how their activity scales with the difference
between actual and expected reward. To this
end, we analyzed the dopamine responses at
the time of the reward in the experiment shown
in Fig. 1. Each of three distinct visual stimuli,
presented on pseudorandomly alternating
trials, predicted that one of two potential lig-
uid volumes would be delivered with equal
probability. Animals discriminated behavior-
ally between the three reward-predicting stimu-
li (Fig. 1A). Confirming the data described
above, the larger of the two volumes always
elicited an increase in activity at the time of
the reward, and the smaller a decrease. How-
ever, the magnitude of activation or suppres-
sion appeared to be identical in each case,
despite the fact that the absolute difference
between actual and expected volume varied
over a 10-fold range (Fig. 4, A and B). Thus,
the responses of dopamine neurons did not
appear to scale according to the absolute dif-

A

ference between actual and expected reward.
Rather, the sensitivity or gain of the neural
responses appeared to adapt according to the
discrepancy in volume between the two po-
tential outcomes.

To document this result further, we plotted
the median neural responses as a function of
liquid volume and drew a straight line to con-
nect the data points representing the larger and
smaller outcomes after each visual stimulus
(Fig. 4C). The slope of these lines provided an
estimate of the neurons’ gain or sensitivity with
respect to liquid volume. When the discrepancy
was large, the sensitivity of dopamine neurons
was low, and when the discrepancy was small,
sensitivity was high. As a result of this
adaptation, the neural responses discriminated
between the two likely outcomes equally well,
regardless of their absolute difference in mag-
nitude. The present data are not sufficient to
determine precisely to which aspect of the re-
ward prediction the neuron’s sensitivity adapted,
but further analysis provided limited evidence
that sensitivity adapted to the discrepancy
between potential liquid volumes (such as the
difference or variance) rather than to their
expected value (12) (fig. S2).

Our results suggest that the activity of
dopamine neurons carries information on the

Reward onset

medium (0.15 mi)

]I 41

Reward onset

B
1.
0.
0.
= 0.
£ 0
8o
-0.
-0.4
0.0 0.2 0.4 0.6
Reward magnitude (ml)
= °
5 spikes/s|
S R 3 E
large (0.50 ml) Eo 0
i
0
sk
%0
2
2
small large
(0.05 mi) (0.50 mi)

Altemnative reward magnitude

Fig. 3. Bidirectional dopamine responses to reward outcomes reflect deviations from predictions.
(A) A single conditioned stimulus was usually followed by an intermediate volume of liquid (0.15
ml) that elicited no change in the neuron’s activity (center). However, on a small minority of trials,
smaller (0.05 ml) or larger (0.50 ml) volumes were unpredictably substituted, and neural activity
decreased (left) or increased (right), respectively. Neural responses to the large liquid volume were
relatively long-lasting (supporting online text). (B) Median responses (t95% confidence intervals)
from the population as a function of liquid volume for the experiment in (A) (12 neurons from
animal A, 17 neurons from animal B). Responses in each neuron were normalized to the response
after the unpredicted delivery of liquid (0.15 ml) in a separate block of trials and in the absence of
any explicit reward-predicting stimulus. (C) Responses of a single neuron to three liquid volumes,
delivered in the context of two different predictions. One stimulus predicted small or medium
volume with equal probability, whereas another stimulus predicted medium or large volume. The
medium volume activated the neuron in one context, but suppressed activity in the other. (D)
Population responses (n = 53 neurons, animal B) to medium reward in the experiment in (C). The
plot shows the median, the +95% confidence intervals (notches corresponding to obtuse angles),
the 25th and 75th percentiles (boundaries corresponding to right angles), and the 10th and 90th
percentiles (bars). In each neuron, percentage change in activity was normalized to the response to
unpredicted liquid (0.15 ml, which elicited a median increase in activity of 97%).

magnitude of reward. In representing reward
magnitude, neural activity displayed two
forms of adaptation that depended on the
prediction that was in place at the time of the
reward. First, the activity increased or de-
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Fig. 4. Neural sensitivity to liquid volume adapts
in response to predictive stimuli. (A) Activity of a
single neuron showing nearly identical responses
to three liquid volumes spanning a 10-fold
range. Each of three pseudorandomly alternating
visual stimuli (shown at left) was followed by
one of two liquid volumes at p = 0.5 (top, 0.0 or
0.05 ml; middle, 0.0 or 0.15 ml; bottom, 0.0 or
0.5 ml). Responses after onset of visual stimuli
increased with their associated expected reward
values. Only rewarded trials are shown. (B)
Population histograms for different liquid vol-
umes from the experiment in (A) (57 neurons,
animal A). (C) Each line connects responses
occurring in the context of a specific con-
ditioned stimulus, and its slope provides a
measure of gain or sensitivity. Each point
represents the median (+95% confidence inter-
vals) response of the population taken after
normalizing the percentage change in activity in
each neuron to the response after unpredicted
liquid (0.15 ml) delivered in a separate block of
trials (which elicited an activation of 266%
above baseline in animal A, n = 57 neurons,
and 97% in animal B, n = 53 neurons). (Left) The
experiment in (A) and (B). (Right) The same
experiment, but performed in animal B with two
nonzero liquid volumes per conditioned stimulus
at equal probability (p = 0.5) (stimulus 1: 0.05
versus 0.15 ml, stimulus 2: 0.15 versus 0.5 ml,
stimulus 3: 0.05 versus 0.5 ml).
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creased depending on whether the reward
outcome was larger or smaller, respectively,
than an intermediate reference point such as
expected value. A second, unanticipated form
of adaptation was the change in sensitivity or
gain of neural activity that appeared to depend
on the range of likely reward magnitudes (Fig.
4). Thus, the larger of two potential rewards
always elicited the same increase in activity
and the smaller of the two elicited the same
decrease in activity, regardless of absolute
magnitude. The identical responses to liquid
volumes spanning a 10-fold range were not
due to an insensitivity of the dopamine neu-
rons, which were capable of greater activa-
tions (Fig. 4C, note normalization of data
points) and discriminated well among these
same liquid volumes when delivered in the
absence of explicit predictive stimuli (Fig. 2).
Rather, the gain of neural activity with respect
to liquid volume appeared to adapt in pro-
portion to the range or standard deviation of
the predicted reward outcomes, so that neural
discrimination between the two reward out-
comes that were most probable from the
animal’s perspective was robust regardless of
their absolute difference in magnitude.

The efficiency and accuracy with which
neural activity can code the value of a stim-
ulus (such as liquid volume) can be greatly
increased if neurons make use of information
about the probabilities of potential reward
values. Neural activity can then be devoted to
representing probable values at the expense
of improbable values. Our evidence suggests
that the transient dopamine response to con-
ditioned stimuli may carry information on
expected reward value, and previous work
shows that the more sustained activity of
dopamine neurons reflects a measure of
reward uncertainty such as variance (10). If
the system possesses prior information con-
sisting of the expected value and variance of
reward, then this information need not be
represented redundantly at the time of re-

ward. Discarding this old information may
be achieved by subtracting the expected val-
ue from the absolute reward value and then
dividing by the variance. Analogous normal-
ization processes appear to occur in early
visual neurons (20-22). It is not known to
what extent the normalization processes
observed in dopamine neurons are actually
performed in dopamine neurons as opposed to
their afferent input structures (23). Because
the new information is by definition precisely
the information that the system needs to learn,
the activity of dopamine neurons would be an
appropriate teaching signal (24).

Adaptation appears to be a nearly universal
feature of neural activity. There is substantial
evidence, particularly from the early visual sys-
tem, that adaptation contributes to the efficient
representation of stimuli (20-22, 25-28). We
have extended the principles of efficient
representation to the study of reward. Reward
is central to processes underlying behavior,
such as reinforcement learning and decision-
making, and consideration of limitations and
efficiency in the neural representation of
reward may yield insights into these processes.
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Material and Methods

The individual animals, the basic design of the experiments and the electrophysiological
techniques for extracellularly recording from dopamine neurons were identical to those
previously reported (10). All procedures were performed in Fribourg, complied with the
Swiss Animal Protection Law and were supervised by the Fribourg Cantonal Veterinary
Office.

Experimental design. Two adult female Macaca fascicularis monkeys were mildly

fluid deprived. They were trained in a Pavlovian procedure in which distinct visual stimuli
predicted specific amounts of sweetened liquid (0.00 ml, 0.05 ml over 40 ms, 0.15 ml over
100 ms, or 0.50 ml over 240 ms) with specific probabilities (P = 0.0, 0.5, or 1.0) (Fig. S1).
We used not more than two rewards per stimulus, which allowed us to explore several
stimuli with different reward conditions during the limited testing period with each neuron.
We assume the frequency and amount of liquid to provide reasonable approximations of the
animals' estimates of the probability and magnitude of reward. Stimuli were chosen to have
similar physical salience but to be easily discriminated. To aid discrimination, each
stimulus was presented at a unique location on the computer monitor. Liquid was
delivered via a computer-controlled solenoid valve from a spout in front of the animal’s
mouth. The onset of liquid delivery occurred 2 s after the onset of visual stimuli, and
offsets of visual stimuli and liquid flow coincided. Licking behavior was monitored with an
infrared detector. ‘Unpredicted’ liquid, not signaled by any immediately preceding

stimulus, was delivered to each neuron in a separate block of trials. The inter trial interval



(from reward to next conditioned stimulus or reward) averaged 9 s, consisting of a fixed 4 s
plus an exponentially distributed interval with a mean of 5 s.

The computer that controlled behavior did not deliver liquid in a completely random
manner. To prevent long streaks in which a stimulus was repeatedly followed by the same
reward outcome, the program insured that the actual frequencies would precisely match the
assigned probabilities after 8 consecutive trials of a specific visual stimulus. The ‘counter’
was reset if the experimenter interrupted the recording for more than a few seconds.
Although it would seem to be difficult given the intermixed trial types, it would by possible
in principle for an animal to learn this structure and thereby reduce its uncertainty about
reward. Previously published analysis of behavior and neural data suggests that the animals
did not learn to take advantage of this structure (10).

Training consisted of 100-200 trials of each stimulus per day, five days per week, for
about five weeks. Recordings began only after substantial pretraining (5-8 days and 600—
1500 trials of each type) and emergence of discriminative conditioned licking responses
during the stimulus and preceding the time of reward.

Electrophysiological Recordings. As previously described (S1, 8-11), dopamine

neurons in the substantia nigra and ventral tegmental area were identified solely by their
discharge characteristics, including low basal firing rates (0.1 — 8.0 Hz) and long duration,
initially negative or positive waveforms (1.5 — 5.0 ms, high-pass filtered at 100 Hz and -3
dB). Prior studies in primates have shown that ventral midbrain neurons having these
properties are antidromically activated by stimulation of the striatum, and their firing is

suppressed by systemic administration of the dopamine D2 receptor agonist apomorphine



(S1). These characteristics are similar to those of identified dopaminergic neurons in other
mammalian species (e.g. S2, S3, S4).

Recording sites. Recording sites were marked with small electrolytic lesions and

reconstructed from 40 pm thick, stereotaxically oriented coronal brain sections, stained
with cresyl violet or antibodies to tyrosine hydroxylase. Recording sites overlapped
substantially with those described in a previous report which shows plots of neuronal
positions relative to regions of dense tyrosine hydroxylase staining (10). Planes of recorded
neurons ranged from 5.5 to 10.5 mm anterior to the interaural line.

Data analysis. Statistical analysis of neural activity followed our previously
described methods (8, 10). Typically, at least 15 trials of each trial type were performed
per neuron; the minimum accepted trial number for analysis was 7. Average firing rates
were measured in standard time windows (see below) and divided by the average rate in a 1
s control period immediately preceding event onset to calculate the percent change in
impulse rate. These values were normalized by dividing them by the response to an
analogous event (either a visual stimulus or liquid delivery) recorded in the same neuron.
Normalized percent changes were used for both statistical analysis and graphical display.
The 95% confidence intervals were calculated in the same manner as in the preceding
report (10), multiplying the appropriate t-value by the interquartile range and dividing by
1.075 times the square root of the number of observations (S5). Activity in the standard
time windows was compared to the 1 s control activity using a Wilcoxon matched-pairs,
signed rank test on normalized counts in each trial with each neuron (p<0.01). We
employed the Mann-Whitney test for assessing the discrimination between different trial

types within single neurons (p<0.01) and the Wilcoxon test for comparing responses within



populations of neurons. The Bonferroni method was used to correct for multiple
comparisons.

Standard time windows were fixed across trial types and across neurons, and were
chosen so as to capture most of the period in which neural activity changed. Following
onset of visual stimuli, the windows were 90-180 ms for monkey A and 110-240 ms for
monkey B. For responses following liquid onset, or visual stimulus offset in the case of no
reward, the window was 120-320 ms in both monkeys. Peak dopamine responses are
typically delayed by about 150 — 200 ms after an error event. A single window was chosen
to capture both the periods of suppression and excitation.

A particular time window of 250—400 ms was employed for the specific experiment
shown in figure 3A, B, because responses were spread over a longer duration due to
prolonged liquid flow with unexpectedly higher volumes. In many past experiments in our
laboratory, the animals were able to predict that at a particular moment in time, a drop of a
known volume of liquid either would or would not be delivered. A particular volume of
liquid always corresponds to a particular duration of liquid flow, so that if a particular
volume is expected, then the onset of liquid flow can be used to predict its overall duration.
Thus the prediction error, and the dopamine response, is time locked to the onset and does
not continue for the duration of the liquid flow. In some of the present experiments
however, and particularly that shown in figure 3A, B, both the theoretical prediction error
and the dopamine response are spread out over time. In figure 3A, the activation can be
seen to be particularly sustained in response to 0.5 ml of liquid flowing for 240 ms. Most
other neurons tested in this experiment showed similarly long-lasting responses. In

principle, the positive error signal in this case would begin only after 120 ms, since the



expected liquid volume lasts only for 120 ms, and would continue until 240 ms when liquid
flow stops. The negative error signal to the small reward (0.05 ml over 40 ms) in this
experiment would not be expected to begin until 40 ms.

Additional analysis of data shown in Figure 4

The sensitivity or gain of the neural responses as a function of liquid volume adapted
according to the prediction made by the visual stimulus, so that responses appeared to be
equivalent regardless of their absolute magnitude (Fig. 4). We considered two hypotheses
concerning what aspect of the prediction evoked the adaptation. First, the adaptation in
sensitivity may have consisted of normalization to some measure of the discrepancy
between likely outcomes, such as the range or standard deviation. Alternatively,
normalization could have occurred to the expected value. The experiments were not
originally designed to discriminate between these two possibilities, and in the experiment
depicted in figure 4C left, expected value and range perfectly covaried. However, in the
experiment of figure 4C right, the two varied in a partially independent manner across
visual stimuli, and therefore this data set provided an opportunity to compare the two
hypotheses. The neural responses of figure 4C right were replotted after normalizing the
abscissa by either the difference (range) in potential volumes (Fig. S2 top) or by expected
liquid volume (mean) (Fig. S2 bottom). The observation that neural responses in all three
conditions appeared to be identical could be explained by the fact that all pairs of reward
outcomes were exactly one range apart (Fig. S2 top). By contrast, when liquid volume is
expressed in units of the mean, the difference between pairs of reward outcomes ranged
from 1.00 to 1.64 means (Fig. S2 bottom), and yet neural responses appeared insensitive to

this discrepancy. This did not appear to be due to saturation of the response, since



responses to unpredicted volumes of 0.15 ml in the same neurons were about twice as large
(Fig. S2). In order to statistically compare the two normalization procedures, we compared
the slopes for each pair of reward outcomes (Fig. S2). The slopes did not differ from one
another after normalizing by the range (Fig. S2 top) (p > 0.2 for all three comparisons,
Wilcoxon paired sample test, n = 53), but the slope corresponding to liquid volumes of 0.05
and 0.50 was significantly less than either of other two after normalizing by the mean (Fig.
S2 bottom) (p < 0.001). To directly compare the effect of normalization by range versus
mean on the slopes, the difference between the slope for the 0.05-0.50 ml pair and the
mean of the other two slopes was divided by the mean slope. This ratio was calculated in
each neuron after normalization to the mean, and again after normalization to the range, and
was significantly greater after normalization by the mean (p<0.0001, n = 53, Wilcoxon
paired sample test). This analysis suggests that normalization by the range could account
for the identical responses, whereas normalization by the mean or expected value would not
in itself appear to be fully sufficient to account for the identical responses. Although the
present evidence on this point is limited, it suggests that normalization by the range
provides the more parsimonious explanation. As the range perfectly covaried with the
standard deviation in all the present experiments, the observed adaptation appeared to occur
relative to the standard deviation, which is an accepted measure of uncertainty.
Furthermore, past experiments indicate that the sustained, delay-period activity of
dopamine neurons may represent the standard deviation or some other measure of
uncertainty. Studies on motion-sensitive neurons of the fly suggest that they possess
information about the standard deviation and use it for normalization in a manner

analogous to what we observe in dopamine neurons (21, 22).
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Fig. S1 Visual stimuli indicated probabilities of various liquid volumes. One stimulus was

presented in each trial on a computer monitor directly in front of the animal. Each stimulus
was always presented in the same unique location. The particular stimuli illustrated here
were used in animal A in the experiments illustrated in figures 1 and 4. A particular image

was never used in more than one experiment in an individual animal. Different images

were used in Animal B.



Animal A Animal B

06
04}
02Ff
00F
-02F
0.4}
0695 ———00 05 -05 00 05
Reward magnitude (units of range)

7

X

0.8
0.6
0.4
0.2
0.0

-0.2

0.4

-0.6

7.0 05 00 05 1.0 -10 0.5 0.0 05 1.0
Reward magnitude (units of mean)

Fig. S2. Adaptation of neural sensitivity to liquid volume following reward-predicting
stimuli. Same data as in figure 4C, but replotted after normalizing the abscissa by either the
range of potential liquid volumes predicted by a visual stimulus (top), or by the expected
value (mean) indicated by a visual stimulus (bottom). Each line connects a pair of points
representing the two potential reward outcomes predicted by a distinct visual stimulus.
Each point represents the median response (£95% confidence intervals) of the population
taken after normalizing to the response following unpredicted reward recorded in the same
neuron (0.15 ml; median activation of 266% in animal A, n =57, and 97% in animal B, n =
53). The lesser variation of the slopes in panel A suggests that dopamine neurons or their
inputs may normalize the liquid volumes by range or standard deviation rather than

expected value or mean.
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