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How do addictive drugs hijack the brain’s reward system? This review speculates how normal, physiological
reward processes may be affected by addictive drugs. Addictive drugs affect acute responses and plasticity
in dopamine neurons and postsynaptic structures. These effects reduce reward discrimination, increase the
effects of reward prediction error signals, and enhance neuronal responses to reward-predicting stimuli,
which may contribute to compulsion. Addictive drugs steepen neuronal temporal reward discounting and
create temporal myopia that impairs the control of drug taking. Tonically enhanced dopamine levels may
disturb working memory mechanisms necessary for assessing background rewards and thus may generate
inaccurate neuronal reward predictions. Drug-induced working memory deficits may impair neuronal risk
signaling, promote risky behaviors, and facilitate preaddictive drug use. Malfunctioning adaptive reward
coding may lead to overvaluation of drug rewards. Many of these malfunctions may result in inadequate
neuronal decision mechanisms and lead to choices biased toward drug rewards.
Introduction
Drugs of addiction have two principal, closely related functions.

First, they constitute rewards, as they induce learning, approach

behavior, emotions, and positive feelings, just as natural rewards

do. Second, they modify the brain’s physiological reward

system. However, their influence on the brain is not constrained

by physiological receptors and many regulatory mechanisms

engaged by natural rewards. Thus addiction constitutes

primarily a disorder of the reward system.

The most straightforward influence of addictive drugs on the

brain occurs on the dopamine system. Addictive drugs change

the phasic characteristics of dopamine activity in reward

signaling and the tonic function of dopamine levels in permit-

ting and facilitating a large variety of motor and cognitive

functions (see Schultz, 2007, for review). However, the dopa-

mine system does not function in isolation; therefore addictive

drugs influence all major reward systems including the

striatum, orbitofrontal cortex, and amygdala. Addictive drugs

are likely to disturb many of their functions, which may

contribute to the drugs’ behavioral effects and the addiction

process itself.

This review describes a number of normal, physiological

reward processes and speculates how they may be affected

by addictive drugs. This is not an attempt to explain drug addic-

tion, nor does it describe its pathophysiology, which is complex

and beyond the present scope. Rather, the review assesses to

which extent drugs may modify well-characterized, normal,

physiological, neuronal reward processing. The description

remains largely at the systems neuroscience level of reward

function without going into details of cellular and synaptic func-

tions. Althoughmany effects of addictive drugs on the dopamine

systemare known, there is limited firm understanding about drug

influence on neuronal processing of reward and cognition. We

will use the existing data to make hypotheses about crucial
dysfunctions of and beyond the dopamine system that might

explain some of the behavioral alterations and possibly shed

some light on the addiction process itself. The presented

phenomena are primarily neurobiological and should be suffi-

ciently general to apply to many current concepts of behavioral

reward functions including wanting versus liking, habits versus

goal-directed behavior, and hedonia versus decision-making

that are elaborated in current psychological and economic

addiction theories. As the behavioral neurophysiology of reward

processing is usually restricted to learning, approach behavior,

and decision-making, other behavioral components of drug

addiction such as urges, cravings, and withdrawal will not be

addressed.

Actions of Addictive Drugs on Dopamine
Neurotransmission
The dopamine system constitutes the primary target of addictive

drugs (Wise and Bozarth, 1987; Wise, 2002). The drugs affect all

stages of phasic and tonic dopamine processes, from the

generation of action potentials in dopamine cell bodies to the

effects of dopamine on postsynaptic neurons. While focusing

on striatal dopamine, similar mechanisms apply to cortical and

amygdalar dopamine innervation.

Plasticity of Dopamine Neurons

Major drugs of addiction such as cocaine, amphetamine,

morphine, heroine, nicotine, and ethanol act on glutamatergic

synapses on midbrain dopamine neurons and lead to NMDA-

dependent, AMPA-mediated long-term potentiation in dopa-

mine neurons (Figure 1A) (Ungless et al., 2001; Saal et al.,

2003). Thus excitatory influences on these neurons become

enhanced (Figure 1B), in particular NMDA-dependent burst

firing (Zweifel et al., 2009). Amphetamine leads also to reduction

of long-term depression in dopamine neurons (Figure 1C)

(Jones et al., 2000). Thus subthreshold fluctuations of excitatory
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Figure 1. Actions of Addictive Drugs on Dopamine Processes
(A) Long-term potentiation in ventral tegmental dopamine neurons in vitro induced by cocaine. Note the increase in AMPA excitatory postsynaptic current (EPSC)
following systemic cocaine (bottom). From Argilli et al. (2008), with permission by Society for Neuroscience.
(B) Scheme of increased burst responses of midbrain dopamine neurons following cocaine-induced long-term potentiation. From Jones and Bonci (2005), with
permission by Elsevier Ltd.
(C) Blockade of long-term depression in ventral tegmental dopamine neurons in vitro by bath application of amphetamine. From Jones et al. (2000), with permis-
sion by Society for Neuroscience.
(D) Dose-dependent enhancement by cocaine of dopamine efflux induced by single electrical pulse in striatum slices. From Jones et al. (1995), with permission by
the American Society for Pharmacology and Experimental Therapeutics.
(E) Classical scheme of differential influence of global dopamine reinforcement signal on selectively active corticostriatal neurotransmission. The dopamine
reinforcement signal (r) modifies conjointly active Hebbian synapses (a) at striatal neuron (I) but leaves inactive synapses (b) unchanged. There are about
10,000 cortical terminals and 1000 dopamine varicosities on each striatal neuron (Doucet et al., 1986; Groves et al., 1995. Drawing is based on data from Freund
et al. (1984) and Smith and Bolam (1990).
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inputs to dopamine neurons would increase or even generate

action potentials in the absence of reward, generating a false

reward signal.

Phasic Striatal Dopamine Changes

Electrical stimulation of dopamine neurons mimicking natural

dopamine responses to reward induces striatal dopamine

release. Systemically administered cocaine or amphetamine

enhances the stimulus-induced dopamine increase by blocking

the reuptake transporter (Figure 1D) (Jones et al., 1995; Gonon,

1997; Venton et al., 2003). Thus, cocaine further exaggerates the

striatal dopamine changes following an excitatory dopamine

signal that is already enhanced, or falsely generated, by synaptic

plasticity at dopamine input synapses.

Tonic Striatal Dopamine Levels

Addictive drugs increase the tonic concentration of striatal dopa-

mine by various mechanisms (Di Chiara and Imperato, 1988).

Opiates and nicotine enhance the tonic firing of midbrain dopa-
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mine neurons (morphine: Matthews and German 1984; Johnson

and North, 1992; nicotine: Lichtensteiger et al., 1982; Pido-

plichko et al., 1997), although depressant effects may occur

(Bonci and Malenka, 1999). Cocaine and amphetamine block

reuptake transport, which enhances tonic dopamine concentra-

tions despite suppressed dopamine neuron firing (Bunney et al.,

1973). It is well known that tonic dopamine concentrations are

finely regulated within postsynaptic brain areas (Chesselet,

1984). Deviations from these optimal levels, including increases

of local tonic dopamine concentrations and dopamine turnover,

lead to impaired striatal and cortical mechanisms underlying

working memory, sensory discrimination, and planning (Murphy

et al., 1996; Elliott et al., 1997; Liu et al., 2008), which may

underlie the working memory deficits seen in drug abusers

(Ornstein et al., 2000). Thus through their effects on tonic dopa-

mine levels, drugs may impair striatal and cortical mechanisms

beyond reward processing.
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Dopamine-Dependent Transient Enhancement

of Striatal Responses

Varicosities of dopamine axons impinge on dendritic spines of

striatal and cortical neurons that are contacted by cortical

afferents in a triad arrangement (Figure 1E) (Freund et al.,

1984; Goldman-Rakic et al., 1989). This arrangement allows

dopamine neurotransmission to affect postsynaptic process-

ing. Dopamine D1 receptor activation enhances striatal post-

synaptic depolarizations (Hernández-López et al., 1997). Thus

increased or false dopamine signals following addictive drugs

may exert a facilitatory effect on excitatory responses in the

striatum, and possibly the cortex. The enhancement via D1

receptors may help the transition from drug use to addiction,

whereas D2 or D3 receptors may be involved in the expression

of addiction (Capriles et al., 2003; Kalivas and Volkow, 2005).

Responses in subpopulations of striatal and cortical neurons

reflect reward prediction and movement initiation (Hikosaka

et al., 1989; Schultz and Romo, 1992; Watanabe, 1996; Has-

sani et al., 2001; Padoa-Schioppa and Assad, 2006). Thus, by

enhancing responses to drug-predicting stimuli, and possibly

reducing responses to natural rewards (Kalivas and Volkow,

2005), addictive drugs could prioritize reward prediction and

movement initiation.

Dopamine-Dependent Striatal and Cortical Plasticity

The classic triad arrangement of dopamine varicosities,

dendritic spines, and cortical inputs (Figure 1E) allows dopa-

mine to enhance spike-time-dependent plasticity at active

cortico-striatal and cortico-cortical synapses (Gurden et al.,

2000; Reynolds et al., 2001; Wang et al., 2006; Izhikevich,

2007; Pawlak and Kerr, 2008; Shen et al., 2008). The induced

long-term potentiation and long-term depression are candidate

mechanisms for phasic dopamine signals to mediate behavioral

learning.

Thus, by affecting striatal and cortical plasticity, addictive

drugs could lead to long-lasting changes of the motor, reward,

and cognitive functions of these structures.

Dopamine Reward Signals
Dopamine systems are involved in drug addiction in two

important ways. First, data from neuronal stimulation, lesioning,

neuropharmacology, and neurophysiology show that the dopa-

mine system is a principal component of the brain’s reward

system. Its activation induces learning and approach behavior.

Second, drugs of addiction constitute rewards and crucially

affect neurotransmission in dopamine and associated brain

systems. In bypassing sensory receptors and their activity-

limiting mechanisms, they induce unphysiological dopamine

stimulation, which may lead to addiction.

Prediction Error and Learning

Normal mechanisms. According to reinforcement learning

theory, prediction errors act to increase or decrease the

prediction of outcome value and thus mediate learning

(Rescorla and Wagner, 1972; Sutton and Barto, 1981). In its

most simple expression, the reward prediction error d captures

the discrepancy between received reward R and prediction

V in trial t:

dðtÞ=RðtÞ � VðtÞ;
and serves to update the predicted reward value V in the next

trial:

Vðt+ 1Þ=VðtÞ+ kdðtÞ;
with k as learning rate.

Most dopamine neurons are activated by rewards and reward-

predicting stimuli. The reward response codes a prediction error;

a reward that is better than predicted elicits an activation (posi-

tive prediction error, R > V), a fully predicted reward (R = V) draws

no response, and a reward that is worse than predicted induces

a depression (negative error, R < V) (Figure 2A) (Schultz et al.,

1997). The response implements the teaching term of efficient

reinforcement learning models (Rescorla and Wagner, 1972;

Sutton and Barto, 1981) and occurs during learning (Schultz

et al., 1993; Hollerman and Schultz, 1998). Stimuli not associated

with prediction errors are blocked from behavioral and neuronal

learning (Waelti et al., 2001).

Potential vulnerabilities. A recent modeling study hypothe-

sized that drug addiction may result from associative learning;

the drug-induced higher dopamine levels would mimic a positive

dopamine prediction error signal irrespective of any true error

and affect striatal plasticity (Redish, 2004). The present hypoth-

esis is based on the mostly phasic effects of addictive drugs on

phasic dopamine signals and their consequences on neuronal

plasticity. While there is considerable debate about a causal

role of dopamine in driving learning, the following descriptions

assume that the prediction error contributes, at least to some

extent, to behavioral learning. Although the electrophysiological

characterization of prediction error coding cannot solve the

issue, the effects of electrical and optogenetic dopamine stimu-

lation on learning (Corbett and Wise, 1980; Tsai et al., 2009)

suggest a dopamine contribution to several forms of learning.

The long-term potentiation of excitatory inputs to dopamine

neurons by addictive drugs (Figure 1A) would increase the

phasic activation of dopamine neurons by positive prediction

errors (R > V) (Figure 1B) and the resulting impulse-dependent

striatal dopamine release. Psychostimulants such as cocaine

would further enhance this phasic striatal dopamine increase

(Figure 1C). Compatible with this reasoning, even a single admin-

istration of nonaddictive dopamine receptor agonists such as

L-Dopa leads to enhanced positive prediction error signals in hu-

mans (Pessiglione et al., 2006). By contrast, the reduction of

striatal dopamine following negative prediction errors (R < V)

would be blunted by the tonic dopamine increase induced by

all major drugs of addiction. Finally, there would be no phasic

striatal dopamine change in the absence of prediction errors (R

= V), as the drug-induced tonic elevation of dopamine levels

would not adequately mimic a phasic, positive prediction error

signal. Indeed, tonic dopamine increases affect learning much

less than phasic changes (e.g., Grace, 1991; Tsai et al., 2009).

The enhanced influence of positive prediction errors and the

blunted effect of negative prediction errors would lead to mono-

tonically increasing striatal plasticity. Thus, the value prediction V

would fail to asymptote and ultimately exceed the value of the

primary reward R. Although saturation and self-regulatory mech-

anisms would ultimately limit the process, the resulting extreme

induction of reward prediction could overstimulate approach

behavior to the level of compulsion. Conditioned inhibition may
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 605
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Figure 2. Phasic Increases of Neurophysiological Dopamine Activity following Real and Potential Rewards
(A) Activations following reward prediction errors occurring in 75%–90% of dopamine neurons (right) and reward-predicting stimuli (60%–75% of neurons; left).
Data from Schultz (1998).
(B) Generalization of phasic activating population response from reward predicting stimulus (gray) to explicit no-reward predicting stimulus (black; conditioned
inhibitor). The shorter and smaller activations to the conditioned inhibitor are partly offset by depressions. Similar generalizing activations are seen with
unrewarded stimuli in up to 50% of dopamine neurons (Waelti et al., 2001; Tobler et al., 2003). Data from Tobler et al. (2003), with permission by Society for
Neuroscience.
(C) Activations to aversive events. Top: Typical lack of activation to visual stimulus during active avoidance. Primary aversive events activate only about 15% of
dopamine neurons. Aversive responses do not code prediction errors (Matsumoto and Hikosaka, 2009). Bottom: activating population response to conditioned
aversive stimulus due to stimulus generalization in 65% of dopamine neurons (gray: aversive and appetitive stimuli are both visual), but lack of response when
appetitive stimulus is auditory (black). Data from Mirenowicz and Schultz (1996), with permission by MacMillan.
(D) Depressant response to conditioned inhibitor (top) in neuron showing activating response to conditioned excitor (bottom). Data from Tobler et al. (2003), with
permission by Society for Neuroscience.
(E) Phasic activations following novel, physically intense stimuli (about 80%). Activations by physically intense stimuli are substantially reduced when pseudo-
conditioning is controlled for (S. Kobayashi and W. Schultz, 2010, Soc. Neurosci., abstract). Overlapping h-eog traces show horizontal eye movements toward
the novel stimulus; unfocused h-eogs after >60 trials indicate familiarity, accompanied by loss of dopamine responses. Data from Ljungberg et al. (1992), with
permission by American Physiological Society.
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not occur, as the tonic dopamine increase would blunt any

neuronal depression, further contributing to compulsion.

The reduction of long-term depression by amphetamine, and

possibly other psychostimulants such as cocaine, would facili-

tate false phasic activations of dopamine neurons by random

excitations. These activations would occur without any reward

and be independent of actual prediction errors. Postsynaptic

striatal and cortical mechanisms would be unable to distinguish

such false activations from true positive prediction error signals

and react with plastic changes. Thus, any stimulus present

during the action of amphetamine and cocaine would be learned

as a reward predictor and facilitate approach behavior, including

stimuli not associated with prediction errors that are normally

blocked from learning (Waelti et al., 2001).

Reward Discrimination

The capacity to discriminate between different rewards is impor-

tant for selecting the most valuable reward during decision

making. Reward discrimination is limited by two processes,

namely stimulus generalization, which is due to physical simi-

larity between stimuli, and pseudoconditioning, which occurs
606 Neuron 69, February 24, 2011 ª2011 Elsevier Inc.
via context conditioning by primary reinforcers (Mackintosh,

1974; Sheafor, 1975). The activating dopamine responses to

stimuli consist of two components. The initial component is

prone to generalization and thus discriminates poorly, whereas

the second component distinguishes well between differently

rewarded stimuli (Figure 2B). Generalization in the first compo-

nent of dopamine responses occurs with neutral stimuli (Schultz

and Romo, 1990; Waelti et al., 2001), aversive stimuli (Mireno-

wicz and Schultz, 1996; Joshua et al., 2008; Matsumoto and

Hikosaka, 2009), explicit nonreward predicting stimuli (condi-

tioned inhibitors; Tobler et al., 2003), and delay-predicting stimuli

(Kobayashi and Schultz, 2008). Substantial fractions of dopa-

mine neurons are activated by physically salient stimuli (Ljung-

berg et al., 1992), although these responses seem to be largely

due to pseudoconditioning (Kobayashi and Schultz, 2010). The

initial, ‘‘false,’’ generalized or pseudoconditioned activation is

often followed by a depressant response that may not entirely

cancel the effects of the activation. Thus stimulus generalization

may lead to net striatal dopamine release with neutral stimuli

(Day et al., 2007). However, although generalization and
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pseudoconditioning reduce reward discrimination, they may

play a useful role in enhancing the detection of potential rewards.

The limited reward discrimination by dopamine neurons may

become disastrous for drug addiction in two additive ways. First,

drugs would enhance the generalized activations by neutral and

aversive stimuli and the pseudoconditioned responses in

rewarding contexts, along with the primary responses to re-

warded stimuli and rewards. Second, the drug-induced tonic

striatal dopamine increase may blunt the depression that often

follows and partly compensates the generalized or peudocondi-

tioned activation. The enhanced generalized or peudocondi-

tioned dopamine activation would result in reduced reward

discrimination by postsynaptic striatal mechanisms. Thus, under

the influence of drugs, less rewarded, neutral, or aversive stimuli

would lead to stronger phasic striatal dopamine changes and

increased dopamine-dependent postsynaptic responsiveness

and plasticity. Interestingly, addictive drugs do not usually

induce withdrawal behavior before addiction develops, even

though the few dopamine activations induced by aversive stimuli

are likely to be also enhanced, confirming the strength of the

reward over that of aversive dopamine function.

The breakdown of dopamine reward discrimination does not

necessarily mean impairment of reward discrimination in

general. Populations of neurons in the striatum, orbitofrontal

cortex, and many other reward structures discriminate well

between different rewards, including liquids, foods, and drugs

(Carelli and Deadwyler, 1994; Bowman et al., 1996; Chang

et al., 1998; Tremblay and Schultz, 1999; Hassani et al., 2001).

Obviously, these reward discriminations rely on inputs other

than dopamine inputs. In this way, general reward discrimination

may be maintained during drug action, even when dopamine-

dependent learning mechanisms lose discrimination.

Punishment and Conditioned Inhibition

Due to the long-term consequences, drugs should be consid-

ered as aversive; however, they rarely induce avoidance

behavior as the aversive effect is overwhelmed by the rewarding

component. Furthermore, drug use prevents drug users from

receiving other rewards, including money, salaries, and friends.

Thus drugs have a conditioned inhibitory component.

Minor fractions of dopamine neurons are activated by aversive

stimuli when stimulus generalization is ruled out, and many

dopamine neurons show depressions of activity (Figure 2C) (Mir-

enowicz and Schultz 1996; Matsumoto and Hikosaka, 2009).

Conditioned inhibitors lead to occasional activating stimulus

generalization responses (Figure 2B), but depressant responses

prevail (Figure 2D) (Tobler et al., 2003).

Dopamine neurons should respond with depression of activity

to the aversive and inhibitory functions of the aversive compo-

nent of drugs, which would reduce the overall dopamine

response to drugs. However, the enhanced response general-

ization and the tonic increase in dopamine induced by all major

drugs of addiction would blunt the effects of depressant dopa-

mine responses on striatal mechanisms and thus annihilate the

potentially moderating aversive component of addictive drugs.

Novelty

Novelty induces attention, modulates the learning rate param-

eter of associability learning rules, and thus enhances learning

(Mackintosh 1975; Pearce and Hall, 1980). Novelty enhances
existing dopamine responses and induces activations to stimuli

of sufficient minimal intensity (Figure 2E) (Ljungberg et al., 1992).

Addictive drugs may increase the novelty response of dopamine

neurons at their inputs and increase striatal impulse-dependent

dopamine release. This effect may enhance behavioral learning

via striatal plasticity, which may be conceptually linked to the

learning rate parameter that determines the impact of the predic-

tion error.

Temporal Discounting
Temporal discounting refers to the observation that later rewards

have lower subjective value than earlier rewards. Decision

makers need to control their usual preferences for earlier

rewards (impulsivity) to avoid loss of potentially large rewards.

Temporal discounting is associated with reduction of neuronal

responses to later rewards in all major reward structures. Addic-

tive drugs may affect impulsivity, enhance temporal discounting,

and lead to disadvantageous choices via their effects on

neuronal reward responses.

Behavioral preferences for sooner over later rewards indicate

that delayed rewards lose subjective value even though their

objective value remains unchanged (Ainslie, 1975; Mazur,

2002). The factors underlying temporal discounting include

impatience, impulsivity, value deterioration, and fear of loss.

Neurophysiological responses to reward-predicting stimuli

decrease with increasing delays in orbitofrontal, dorsolateral

prefrontal and parietal cortex, striatum, and dopamine neurons

(Figure 3A) (Roesch and Olson, 2005; Roesch et al., 2007,

2009; Kim et al., 2008; Kobayashi and Schultz, 2008; Louie

and Glimcher, 2010). Correspondingly, human blood oxygen-

level dependent (BOLD) responses to reward delay-predicting

stimuli measured in functional magnetic resonance imaging

(fMRI) decrease with increasing delays in ranges between

seconds and months in ventral striatum and medial prefrontal

cortex, correlating with individual degrees of temporal discount-

ing (Figure 3C) (Kable and Glimcher, 2007; Gregorios-Pippas

et al., 2009). Response decreases across a few seconds may

reflect an innate discounting mechanism that evolved for dealing

with value deterioration of natural rewards. The dopamine

prediction error response at the time of the reward increases

with the delay (Figure 3B).

Temporal discounting may contribute to drug addiction as

myopia on immediate rewards and neglect of larger distant

rewards. Addicted individuals discount nondrug rewards such

as money steeper than controls do (Figure 3D), which reflects

drug exposure rather than a premorbid trait (Bickel et al.,

1999). Furthermore addicts discount drugs more than nondrug

rewards (Bickel and Marsch, 2001). Steeper discounting with

the highly valuable drugs comparedwith the less valuablemoney

is at odds with the usually steeper discounting of smaller

compared with larger reward values when drugs are not involved

(Kirby and Marakovic, 1996), suggesting that normal behavioral

discounting is overridden and enhanced by drugs.

Behavioral discounting is correlated with neuronal discounting

in nonaddicted individuals (Figure 3C) and might show similar

relationships in drug addicts. Steeper neuronal discounting

may be based on increased neuronal responses to reward-

predicting stimuli in striatum and frontal cortex and produce
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 607
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Figure 3. Temporal Discounting
(A) Temporal discounting of dopamine responses to reward delay-predicting stimuli. Stimulus-reward delays were 2 (brown), 4 (green), 8 (orange), and 16 s (blue),
each being indicated by a different, small fractal stimulus. Averaged normalized population responses from 54 electrophysiologically recorded single dopamine
neurons (top) suggest hyperbolic discounting (bottom). From Kobayashi and Schultz (2008), with permission by Society for Neuroscience.
(B) Increasing responses of dopamine neurons to delivery of identical liquid reward magnitude following increasing reward delays. Top: Averaged normalized
population responses from 33 dopamine neurons. Bottom: Hyperbolic increase of neuronal activity with delays. FromKobayashi and Schultz (2008), with permis-
sion by Society for Neuroscience.
(C) Temporal discounting of fMRI BOLD responses to reward delay-predicting stimuli in human ventral striatum. Top: Hyperbolic BOLD discounting in seven
participants showing behavioral discounting, but absent BOLD discounting in seven behavioral nondiscounters. Each objective interval (4, 6, 9, and 13.5 s)
was indicated by a different, small fractal stimulus. Subjective stimulus-reward delays were individually estimated by peak-interval procedure; their averages
(triangles and squares) were used for curve-fitting. Bottom: Correlations between BOLD and behavioral hyperbolic discount factors (15 participants). From
Gregorios-Pippas et al. (2009), with permission by American Physiological Association.
(D) Temporal discounting in opioid addicts. Top: Steeper discounting of monetary reward in addicts compared with controls. Bottom: Steeper discounting in
addicts for heroin compared with money. From Madden et al. (1997), with permission by American Psychological Association.
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higher reward prediction as a result of several drug effects.

Altered prediction error responses could increase striatal

plasticity and enhance neuronal responses and reward predic-

tion; positive dopamine prediction error responses at the time

of the reward (Figure 3B) would be increased because more

discounted reward value leads to larger prediction error; nega-

tive prediction error signals would be blunted by increased tonic

dopamine levels. Further factors could be changes in dopamine-

dependent presynaptic and postsynaptic plasticity (Figures 1A

and 1E) and higher phasic dopamine changes with cocaine- or

amphetamine-induced reuptake blockade (Figure 1C).

According to the dual systems account, an impulsive (‘‘beta’’)

system is driven by the value of immediate rewards, whereas an

inhibitory, cognitive (‘‘delta’’) system restrains immediate behav-

ioral reactions and mediates responses to delayed rewards

(Phelps and Pollack, 1968; Laibson, 1997). Human imaging

shows BOLD responses in ventral striatum during choices for

sooner over later rewards (beta system), suggesting impulsive

valuation, and in dorsolateral prefrontal cortex during choices

of later rewards that may reflect the action of the behavioral

control system (delta system; McClure et al., 2004).

Addictive drugs may also affect discounting according to the

dual system account. Enhancement of tonic dopamine levels in

prefrontal cortex by drugs may impair the prefrontal control

system (delta), possibly by altering mnemonic and planning

mechanisms in this cortical area (Murphy et al., 1996; Elliott
608 Neuron 69, February 24, 2011 ª2011 Elsevier Inc.
et al., 1997). In addition, addictive drugs would increase stronger

approach behavior via enhanced neuronal responses to reward-

predicting stimuli which would further challenge behavioral

control. The two mechanisms would lead to additive impair-

ments in discounting and result in more impulsive drug

approach.

Influence of Background Reward
on Prediction (Contingency)
Reward predictions induce approach behavior and provide

essential information for informed decisions. Such predictions

inform about the reward occurring with a stimulus relative to

no stimulus (background). Thus reward predictions are influ-

enced by background reward. The assessment of background

reward requires working memory and discrimination against

stimuli. Disturbance of these processes by addictive drugs

may lead to incorrect predictions resulting in inadequate and

enhanced approach behavior and compulsion.

A stimulus predicts a reward when more reward occurs with

the stimulus than without the stimulus. This can be achieved in

two ways. In conventional experiments, reward is only given

during the stimulus, which amounts to stimulus-reward pairing.

In more realistic situations, some rewards may occur also

without stimuli. Thus reward predictions should take the back-

ground reward into account and provide differential information

about reward during stimuli relative to background. For example,
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elevating background reward without changing stimulus reward

would reduce the reward prediction by the stimulus as some

reward occurs anyway; the reward becomes less contingent

on the stimulus. By contrast, reducing background reward alone

increases reward prediction by the stimulus, as the reward

becomes more contingent on the stimulus. In animal learning

theory, reward contingency, rather than stimulus-reward pairing,

constitutes the fundamental requirement for reward prediction

and learning (Rescorla, 1967).
Most laboratory experiments manipulate reward only during

a stimulus. Neurons in all reward structures show activating or

depressant responses to such stimuli. Manipulations of back-

ground reward use contingency to demonstrate true predictions

rather than simple stimulus-reward pairing. The amygdala is

necessary for true reward prediction, as its lesion makes rats

insensitive to background reward increases; the animals

continue to respond to stimuli that have lost their predictive

properties (Ostlund and Balleine, 2008). Correspondingly, stim-

ulus responses of amygdala neurons are sensitive to changes

in background reward (Figure 4) (Bermudez and Schultz,

2010a). By taking background reward into account, these

neurons are sensitive to contingency and thus code true reward

predictions.

Assessing reward contingencies requires appropriate pro-

cessing of events during the background and relating them to

the specific stimulus. Necessary processes involve working

memory about reward occurrence in the background, discrimi-

nation between background stimuli and the specific stimulus in

order to attribute the reward changes to the background, and

comparison between background reward and stimulus reward.

Working memory and discrimination are known to be impaired

by tonic dopamine increases in frontal and temporal cortex

(Murphy et al., 1996; Elliott et al., 1997; Liu et al., 2008). Thus it

is certainly possible that addictive drugs affect the assessment

of reward contingency via their influence on tonic dopamine

levels in striatum, frontal cortex and, in particular, the amygdala,

with its contingency-sensitive neurons.

Drug addicts often suffer from mental disorders including

anxiety, depression, and schizophrenia. Due to the cognitive

deficits associated with these disorders, drug addicts may

subjectively perceive their environmental background as less

rewarding than normal. Even without mental illness, environ-

mental background rewards are reduced when peer pressure

toward drug use excludes nonusers, which constitutes a known

factor in initial drug consumption. Thus the reduction of back-

ground reward would make stimuli associated with drug rewards

more valuable and induce approach behavior.

The contingency requirement for learning may offer explana-

tions for drug approach and addiction behavior by focusing not

only on the attractive power of drug-associated stimuli, but by

also considering the role of background rewards whose percep-

tion is likely changed in addicts.

Neuronal Risk Signals
In most natural situations rewards occur infrequently and vary

considerably. The resulting incomplete knowledge about

rewards introduces risk and uncertainty. The assessment of

risk is a fundamental component of reward processing, as risk

affects the subjective valuation of rewards and is important for

optimal choices.Risk assessment relieson thecorrect estimation

of reward probabilities. As there are no sensory receptors for

probability, the brain needs to derive probability from the

frequency of past events. The standard deviation of probability

distributions is often termed ‘‘risk,’’ as it refers to the variation

or spread in the distribution. Other valid measures of risk include

the statistical variance (squared standard deviation) and

the informational entropy. Here, risk is viewed as a form of
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 609
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(A) Risk signaling in primate dopamine neurons during the stimulus-reward interval of a Pavlovian task with probabilistic rewards (averaged population activity
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probability distributions (risk). From O’Neill and Schultz (2010), with permission by Cell Press.
(C) Neuronal probability distortions in human prefrontal cortex correlating with behavioral probability distortions (left). Different prefrontal areas were activated in
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uncertainty rather than theprobability of losing,which constitutes

negative value. Risk-taking behavior can be enhanced by at least

three mechanisms, namely genuine changes toward risk taking

(‘‘I love the risk’’), overvaluation of high outcomes (‘‘I don’t care

for small change’’), and optimistic distortions of probabilities of

above-average outcomes (‘‘today is my lucky day’’).

Neuronal Risk Signals

In addition to phasically signaling reward prediction errors, about

one-third of dopamine neurons show a separate, slower, and

more sustained activation during the interval between a stimulus

and a reward (Fiorillo et al., 2003). The activation shows an in-

verted U-shaped relationship to probability similar to that of

standard deviation, variance, and entropy, and does not corre-

late with expected value, which increases monotonically with

probability (Figure 5A). Additional tests with binary equiprobable

(p = 0.5) reward distributions hold entropy constant and confirm

the coding of standard deviation or variance rather than reward

value. Thus the slow, sustained dopamine signal codes the risk

of rewarding outcomes. Although the latency of this activation
610 Neuron 69, February 24, 2011 ª2011 Elsevier Inc.
is too long to participate in decision processes, it might affect

the dopamine released by a subsequent prediction error

response and potentially influence learning via the associability

term of attentional learning rules (Mackintosh, 1975; Pearce

and Hall, 1980).

A group of neurons in orbitofrontal cortex signal reward risk

distinct from reward value (Figure 5B) (O’Neill and Schultz,

2010). The risk responses increase monotonically with higher

standard deviations of binary equiprobable distributions of

reward amounts. Their latency is sufficiently short to allow

them to participate in decision making before overt choices

occur. Movement-related activity in posterior cingulate cortex

increases with risk, possibly reflecting the subjective value of

risky rewards (McCoy and Platt, 2005).

Addictive drugs acting on dopamine mechanisms are likely to

affect risk signals in dopamine neurons and dopamine-inner-

vated structures such as orbitofrontal cortex. The dopamine

risk signal may be enhanced by the action of drugs on long-

term potentiation and depression at input synapses of dopamine
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neurons. The influence of this enhanced signal on postsynaptic

neurons would be boosted by reduced dopamine reuptake

with psychostimulants and by increased dopamine-dependent

postsynaptic responsiveness and plasticity. These mechanisms

could have two separate consequences. First, an enhanced

dopamine risk signal would boost the effects of positive predic-

tion error signals and blunt the effects of negative error signals,

enhancing the associability term of attentional learning rules.

The consequences could be runaway synaptic strengths in post-

synaptic neurons. Second, enhanced dopamine-dependent

postsynaptic responsiveness and plasticity in orbitofrontal

neurons might reduce the distinction between risk and value

signals in orbitofrontal neurons, which might come to respond

to the higher values of risky outcomes while neglecting lower

outcomes, thus confounding risk and value signals and

producing an overly optimistic value signal. These two effects

could produce risk taking and lead to compulsive approach to

drugs.

Variations between Individuals

Behavioral economics suggests that humans perceive in-

structed outcome probabilities in a distorted manner, often

overestimating low probabilities and underestimating high prob-

abilities below p = 1.0. In close correspondence to behavioral

measures, neuronal responses in human prefrontal cortex

show similar probability distortions, suggesting that this brain

region codes probability in a subjective rather than objective

manner (Figure 5C) (Tobler et al., 2008; Hsu et al., 2009). Addic-

tive drugs may induce new or exacerbate existing probability

distortions by increasing tonic dopamine levels, which impair

mnemonic processes (Murphy et al., 1996; Elliott et al., 1997)

that are necessary for adequate probability estimation. This

mechanism may lead to altered risk assessment, which relies

on probability estimation, and may induce enhanced risk taking

if probabilities of high outcomes become overestimated.

Stimuli associatedwithhigher riskelicit increasingactivations in

human striatum and orbitofrontal cortex (Preuschoff et al., 2006;

Tobler et al., 2007). The risk-related activations covary with

individual risk aversion in lateral orbitofrontal cortex and with

risk-seeking in medial frontal cortex (Figure 5D). Risk affects

decision making by influencing the subjective values of

competing outcomes. Indeed, the terms ‘‘risk aversion’’ and

‘‘risk taking’’ indicate that risk reduces or enhances subjective

reward value. This concept constitutes a basic characteristic of

economic utility theory. As a direct neuronal correlate, risk

enhances neuronal value responses in lateral prefrontal cortex

of human risk seekers and reduces value responses in risk

avoiders (Figure 5E) (Tobler et al., 2009). Thus, both the coding

of risk itself and the influence of risk on value coding correlate

withbehavioral riskpreferencesof individuals, suggesting subjec-

tive rather thanobjectiveprocessing.Because thesemechanisms

occur in frontal cortical areas that are innervated by dopamine

neurons, basically all phasic and tonic alterations of dopamine

functions by addictive drugs may affect risk preferences.

Initial Drug Episodes

When thrill-seeking, peer pressure, or mental disorders

encourage a few initial drug taking episodes, neuronal risk

signals might change under the influence of these drugs and

lead to changes in behavioral risk preferences. If these changes
turn into an increased willingness to take risks, individuals may

engage in further drug taking and develop an addiction. Thus

altered neuronal risk processing could play a particularly detri-

mental role during initial, preaddictive stages of drug taking.

Adaptive Reward Coding
Neuronal responses to reward are optimized for reward discrim-

ination. The mechanism involves adjusting the range of neuronal

coding to the range of currently available reward values or, more

specifically, matching probability distributions of neuronal

responses to probability distributions of reward values. The

adaptive process may be disturbed when addictive drugs alter

reward valuation or prediction, perception of reward range, or

the adjustment process itself. The consequences would be

suboptimal learning and reward discrimination.

Normal Mechanisms

Whereas the processing capacity of the brain is subject to

biological constraints, the number of possible rewards is almost

unlimited. Dedicating equal processing capacity to all possible

rewards would lead to low slopes of reward-response functions

and poor reward discrimination. However, the amount of avail-

able rewards can vary considerably, and often only a few

rewards are available. An efficient mechanism could maintain

good discrimination by matching neuronal processing to

currently available rewards and neglecting rewards that are

absent. Such adaptation would adjust learning to current

demands, optimize reward-response slopes for reward discrim-

ination, and improve behavioral choices. Indeed, the behavioral

contrast effect in experimental psychology and the reference

dependency in experimental economics demonstrate that

outcomes are valued within changing frames of reference and

that identical outcomes are valued differently depending on

which alternatives are available (Tinklepaugh, 1928; Crespi,

1942; Black, 1968; Kahneman and Tversky, 1979). If neuronal

processing focuses on current probability distributions of reward

values, reward-response slopes adapt and reward discrimina-

tion becomes optimal. Adaptations occur to the main parame-

ters of probability distributions (Figure 6A), namely expected

value and standard deviation. Thus, appropriate adaptation

requires correct assessment of these parameters.

Prediction errors for updating reward values need to distin-

guish between twoprincipal types of reward fluctuation: changes

in expected value (step changes), and changes in standard devi-

ation (stochastic variations) (Figure 6B top). Prediction errors of

the same magnitudes are indistinguishable between step

changes and stochastic variations (Figure 6B middle). However,

a prediction error that is not particularly meaningful in stochastic

variations becomes quite meaningful when it reflects a major

step change above small fluctuations; here learning should be

strong (Behrens et al., 2007; Speekenbrink and Shanks, 2010).

Scaling prediction errors to standard deviation would relate

them to the underlying nature of fluctuation and make them

more meaningful (Figure 6B bottom) (Nassar et al., 2010).

Responses in many reward neurons of orbitofrontal cortex,

striatum, and amygdala adapt to the expected value and stan-

dard deviation of reward distributions (Figures 6C and 6D) (Trem-

blay and Schultz, 1999; Cromwell et al., 2005; Hosokawa et al.,

2007; Padoa-Schioppa, 2009; Kobayashi et al., 2010; Bermudez
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 611



N
eu

ro
na

l r
es

po
ns

e 
 -- >

 

Reward value  -- > 

Adapted to standard deviation 

A

Adapted to expected value 

Medium Low High 

Medium Low High 

Medium Low High 

PE scaled to standard deviation M
ag

ni
tu

de
  --

 > 

Time  -- > 

Prediction error (PE) 

Change in 
expected value 

Change in 
standard deviation B Large standard deviation 

0.06  0.34  0.62 ml 

Small standard deviation 
0.20 0.34 0.48 ml 

2 s 

0.1 0.3 0.5 ml 

D

Block 1 Cereal < apple 

cereal trigger apple trigger 
Block 2 Apple < 

2 s 

raisin 

raisin

trigger apple trigger 

C

Large standard deviation 
0.06  0.34  0.62 ml 

Small standard deviation
0.20 0.34 0.48 ml

2

0.1 0.3 0.5 ml 

D

cereal trigger apple trigger 
Block 2 Apple < 

2 s 

raisin

raisin

trigger appletrigger 

Figure 6. Adaptive Reward Coding
(A) Schematics of adaptation of neuronal responses to expected value and standard deviation of reward value distributions.
(B) Schematics of reward fluctuations and adaptation of prediction errors (received reward value minus expected value). Top: The two principal types of
fluctuation, major change (left) and large stochastic variation (right). Middle: Prediction errors as such do not distinguish between fluctuation types. Bottom:
Prediction errors scaled via division by standard deviation distinguish major changes from stochastic variations of same size.
(C) Adaptation of neuronal reward response in orbitofrontal neuron to approximate expected value. Reward values as derived from behavioral preferences were
cereal < apple < raisin. Visual instructions predict type of reward, and trigger stimuli elicit an armmovement leading to the reward. Data from Tremblay and Schultz
(1999), with permission by MacMillan.
(D) Adaptation of neuronal response in orbitofrontal neuron to standard deviation of reward volume (ml). Inset shows change of reward-response slope in the
neuron shown in main part (result from two linear regressions on reward magnitude). Data from S. Kobayashi and W. Schultz (2010, Soc. Neurosci., abstract),
with permission by Society for Neuroscience.

Neuron

Perspective
and Schultz, 2010b). The prediction error response of dopamine

neurons seems to be scaled by standard deviation (Tobler et al.,

2005); the underlying arithmetic division could involve shunting

inhibitions along dendrites and soma. The phenomenon is also

found in human orbitofrontal cortex and striatum (Breiter et al.,

2001; Nieuwenhuis et al., 2005). Ventral striatal lesions in rats

reduce behavioral reward contrast (Leszczuk and Flaherty,

2000). These data suggest a role of the dopamine system and

other reward structures in adaptation to reward value.

Potential Vulnerabilities

Coding of expected value and standard deviation. Adaptive

reward coding requires appropriate neuronal processing of

experienced and predicted probability distributions of reward

values and their key parameters. Basically all phasic and tonic

alterations of presynaptic and postsynaptic dopamine functions

by addictive drugsmay alter the assessment of reward value and

standard deviation. Inadequate processing of reward contin-

gency would compromise the predictive components of adap-

tive coding.

Adaptation process. Addictive drugs may compromise the

adaptation process itself. The scaling of dopamine responses

by shunting inhibition could be compromised by altered long-

term potentiation or depression at dopamine input synapses.

The effects of altered dopamine prediction error responses,
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boosted by blockade of dopamine reuptake with amphetamine

and cocaine, could lead to changes in short-term postsynaptic

dopamine-dependent plasticity in striatum, orbitofrontal cortex,

and amygdala, which might constitute a substrate for the adap-

tation. The working memory and discrimination impairments

following increased tonic dopamine levels (Murphy et al., 1996;

Elliott et al., 1997) could destabilize the adjustment to the current

reward distribution.

Consequences. Malfunctioning adaptive coding would lead to

suboptimal reward discrimination (Figure 7). The mechanisms

include saturation of neuronal coding at lower or higher reward

values (Figures 7A–7C and 7F), incomplete use of neuronal

coding range (Figures 7A, 7B, 7D, and 7E), and unnecessarily

flat reward-response slopes (Figure 7D). As a result, the neurons

would be unable to accurately assess and discriminate the

values of different rewards, which may contribute to an exagger-

ated subjective valuation of drugs. Wrong scaling of reward

prediction error signals may lead also to confusion between

step changes and stochastic variations and induce unwarranted

learning and unstable approach behavior.

Decision Making
The acquisition of rewards, including addictive drugs, involves

choices between different, predictable options. Economic
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decision processes use values of predicted rewards as inputs

and engage comparisons between these values. Because

most valuation and comparison mechanisms engage the dopa-

mine system and its postsynaptic structures, decision making is

likely to be disrupted by the impact of drugs on dopamine mech-

anisms.

Normal Mechanisms

An economic decision variable uses information from a number

of heterogeneous neuronal reward signals in a form that is

appropriate for the specific comparison mechanism underlying

the decision process. These variables serve as inputs to decision

processes or as their outputs toward the execution of behavioral

choices. Current simple decision models are based on compar-

isons between subjective values of predicted options, including

hedonic aspects. All other parameters contributing to decisions,

including reward delay and risk, would be transformed into value

in order to participate in decisions (e.g., via temporal discounting

and risk aversion). Thus all valuation processes described above

will influence decision making.

In reinforcement theory, predicted action value represents

a key input variable (the reward value obtained for a specific

action irrespective of that action being chosen) (Sutton and

Barto, 1998). Object value could serve an analogous role (the

value of a specific reward object irrespective of being chosen).

Chosen value (the value of the chosen option) is an output vari-

able of the decision process. Neurons in striatum code action

value (Figure 8A; Samejima et al., 2005; Lau and Glimcher,

2008), orbitofrontal neurons code object value (Figure 8B; Pa-

doa-Schioppa and Assad, 2006), and striatal and orbitofrontal

neurons code chosen value (Padoa-Schioppa and Assad,

2006; Lau and Glimcher, 2008). Dopamine reward prediction

error signals are thought to update these decision variables

with current reward values. The comparison between values
would involve, in the most simple case, a winner-take-all mech-

anism that transforms a graded difference into an all-or-none

distinction. This model is adequate for economic choices

between alternatives with known values (Sutton and Barto,

1998).

In other decision models, value comparisons employ the ratio

of reward probabilities of all predicted options as decision vari-

able (log-likelihood ratio; see Gold and Shadlen, 2007). Neurons

in parietal cortex code this decision variable during probabilistic

reward choice (Figure 8C; Yang and Shadlen, 2007). Concepts of

sensory discrimination and decision making suggest that more

sophisticated decisions involve gradual accumulation of

evidence and can be modeled by competing bounded diffusion

processes (Ratcliff et al., 1999; Gold and Shadlen, 2007). In

economic decisions, the current values of the individual options

may race in a random walk fashion toward specific thresholds;

the option whose process reaches its threshold first determines

the behavioral choice. Formal modeling suggests feasible

combinations of winner-take-all and diffusion-race models

(Lo and Wang, 2006). Thus, decision mechanisms require valua-

tion, prediction, working memory, computations, comparisons,

and planning.

Potential Vulnerabilities

Subjective reward values and log likelihood ratios constitute

decision variables that serve as inputs to decision mechanisms.

The addiction process is associated with an increased subjec-

tive valuation of drugs, irrespective of drug value at first use.

Depending on the reward system under study, the value increase

could be induced by themolecular action of the drug on neuronal

reward mechanisms and constitute an essential component of

the addiction process; alternatively, the value could increase

as a simple consequence of the addiction process occurring in

other brain structures. Enhanced positive reward prediction error
Neuron 69, February 24, 2011 ª2011 Elsevier Inc. 613
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(A) Action value coding in a striatum neuron. This neuron coded left action
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signals, and blunted negative error signals, would lead to supra-

normal reward values of drugs. Reuptake blockade and

increased dopamine-dependent postsynaptic responsiveness

and plasticity would enhance the predictive neuronal coding of

action value, object value, and chosen value of drugs in dopa-

mine-innervated brain structures. Insufficient adaptive coding

would produce suboptimal neuronal discrimination between

reward values (Figure 7). Altered tonic striatal and frontal dopa-

mine concentrations would impair working memory processes

necessary for assessing contingencies and reward probabilities

and computing log-likelihood ratios. Irrespective of the addiction

mechanism acting on the individual neuron, the resulting high

value of the drug would dominate the decision process and

produce strong behavioral choices that appear to be beyond

voluntary control.

Reward values would be integrated with subjective prefer-

ences to serve as inputs to decision mechanisms. Drugs can

affect reward preferences in multiple ways via alterations of

phasic and tonic dopamine processes, as described above for

risk preferences.

Most of the drug-induced alterations of neuronal reward

mechanisms may impact neuronal decision mechanisms.

Altered tonic striatal and frontal dopamine concentrations would

affect winner-take-all computations. Alterations in phasic and

tonic dopamine activities might affect the electrophysiological

noise in neurons, change random walks of activity in diffusion-
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race models, and allow drug-related activity to reach decision

thresholds first. These drug-induced alterations of decision

processes would affect behavioral choices between rewards

and may result in exaggerated preferences for drug rewards.

Some of these mechanisms may explain the general behavioral

deficits in decision making observed in drug abusers (Rogers

et al., 1999; Kalivas and Volkow, 2005), which, similar to the

dual systems account of temporal discounting, may involve

inhibitory prefrontal and impulsive subcortical reward systems

(Chambers et al., 2003; Bechara, 2005).
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